Soutien CPI A1 - Séance 12 -

Valentin Bahier

17/12/2020

Dans cette séance, on notera $\mathcal E$ l'espace à trois dimensions, et $\vec{\mathcal E}$ l'espace vectoriel à trois dimensions.

Trois vecteurs $\vec{i}, \vec{j}, \vec{k} \in \vec{\mathcal{E}}$ sont dits **coplanaires** s'ils appartiennent à un même plan vectoriel. Dans le cas contraire, alors ils forment une **base** de $\vec{\mathcal{E}}$, ce qui signifie que pour tout vecteur $\vec{u} \in \vec{\mathcal{E}}$ il existe un unique triplet de nombres (x, y, z) tel que

$$\vec{u} = x\vec{i} + y\vec{j} + z\vec{k}.$$

On note alors $\vec{u} \begin{pmatrix} x \\ y \\ z \end{pmatrix}$, et les nombres x,y,z sont appelés les **coordonnées** de \vec{u} dans la base $(\vec{i},\vec{j},\vec{k})$. Plus précisément, x est appelé l'**abscisse**, y l'**ordonnée**, et z la **cote** de \vec{u} .

Pour repérer les points, on se donne de plus une origine O. Les coordonnées d'un point $M \in \mathcal{E}$ dans le **repère** $(O, \vec{i}, \vec{j}, \vec{k})$ sont les nombres x, y, z tels que

$$\vec{OM} = x\vec{i} + y\vec{j} + z\vec{k}.$$

La base $(\vec{i}, \vec{j}, \vec{k})$ est dite **orthonormée** si $||\vec{i}|| = ||\vec{j}|| = ||\vec{k}|| = 1$ et $\vec{i} \perp \vec{j}$, $\vec{i} \perp \vec{k}$ et $\vec{j} \perp \vec{k}$. Elle est dite **directe** si elle suit la *règle de la main droite* (ou la *règle du tire-bouchon*, ou encore la *règle du bonhomme d'Ampère*, non présentées ici).

Dans toute la suite, on suppose que $(\vec{i}, \vec{j}, \vec{k})$ est une base orthonormée directe (BOND en abrégé). On dit que $(O, \vec{i}, \vec{j}, \vec{k})$ est un **repère orthonormé direct** (ROND).

Pour tous vecteurs $\vec{u}, \vec{v} \in \vec{\mathcal{E}}$, on définit le **produit scalaire** entre \vec{u} et \vec{v} comme

$$\vec{u} \cdot \vec{v} = \left\{ \begin{array}{ll} 0 & \text{si } \vec{u} = \vec{0} \text{ ou } \vec{v} = \vec{0} \\ \|\vec{u}\| \times \|\vec{v}\| \times \cos \theta & \text{sinon, où } \theta \text{ est l'angle non orient\'e entre } \vec{u} \text{ et } \vec{v} \end{array} \right.$$

En pratique, le produit scalaire entre $\vec{u} \begin{pmatrix} x \\ y \\ z \end{pmatrix}$ et $\vec{v} \begin{pmatrix} x' \\ y' \\ z' \end{pmatrix}$ exprimés dans la BOND $(\vec{i}, \vec{j}, \vec{k})$ s'obtient directement par la formule

$$\vec{u} \cdot \vec{v} = xx' + yy' + zz'.$$

En particulier, puisque $\vec{i} \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$, $\vec{j} \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$ et $\vec{k} \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$ dans la BOND $(\vec{i}, \vec{j}, \vec{k})$, on en déduit

$$x = \vec{u} \cdot \vec{i}, \quad y = \vec{u} \cdot \vec{j}, \quad z = \vec{u} \cdot \vec{k}.$$

De plus, la norme de \vec{u} s'exprime comme la racine carrée du produit scalaire entre \vec{u} et lui-même :

$$||u|| = \sqrt{\vec{u} \cdot \vec{u}} = \sqrt{x^2 + y^2 + z^2}|$$

Exercice 1 (Orthogonalité entre vecteurs)

Soient
$$\vec{u} \begin{pmatrix} 2 \\ 0 \\ 1 \end{pmatrix}$$
, $\vec{v} \begin{pmatrix} -1 \\ 4 \\ 2 \end{pmatrix}$ et $\vec{w} \begin{pmatrix} 2 \\ 2 \\ 3 \end{pmatrix}$. Calculer $\vec{u} \cdot \vec{v}$, $\vec{u} \cdot \vec{w}$, et $\vec{v} \cdot \vec{w}$. A t-on $\vec{u} \perp \vec{v}$? $\vec{u} \perp \vec{w}$? $\vec{v} \perp \vec{w}$?

Un plan \mathcal{P} dans l'espace est caractérisé par la donnée d'un point $A \in \mathcal{E}$ par lequel ce plan passe, et de deux vecteurs directeurs non colinéaires \vec{u} et \vec{v} : si \vec{n} est un vecteur tel que $\vec{n} \perp \vec{u}$ et $\vec{n} \perp \vec{v}$, alors pour tout point $M \in \mathcal{E}$,

$$M \in \mathcal{P} \iff \overrightarrow{n} \cdot \overrightarrow{AM} = 0.$$

On dit que \vec{n} est un vecteur **normal** au plan \mathcal{P} . En notant $M\begin{pmatrix} x \\ y \\ z \end{pmatrix}$, $A\begin{pmatrix} x_A \\ y_A \\ z_A \end{pmatrix}$ et $\vec{n}\begin{pmatrix} a \\ b \\ c \end{pmatrix}$, on a alors

$$M \in \mathcal{P} \iff a(x - x_A) + b(y - y_A) + c(z - z_A) = 0$$

 $\iff ax + by + cz + d = 0, \text{ où } d = -ax_A - by_A - cz_A$

ce qui est une équation cartésienne du plan \mathcal{P} .

Afin de trouver rapidement un vecteur normal à un plan, on utilise le **produit vectoriel** défini pour tous vecteurs $\vec{u}, \vec{v} \in \vec{\mathcal{E}}$ comme

$$\vec{u} \wedge \vec{v} = \left\{ \begin{array}{ll} \vec{0} & \text{si } \vec{u} \text{ et } \vec{v} \text{ sont colin\'eaires} \\ \|\vec{u}\| \times \|\vec{v}\| \times \sin\theta \times \vec{w} & \text{sinon, où } \theta \text{ est l'angle non orient\'e entre } \vec{u} \text{ et } \vec{v} \end{array} \right.$$

et où \vec{w} est un vecteur **unitaire** (c'est-à-dire de norme 1) orthogonal à \vec{u} et \vec{v} , et tel que $(\vec{u}, \vec{v}, \vec{w})$ soit une base directe.

En pratique, le produit vectoriel entre $\vec{u} \begin{pmatrix} x \\ y \\ z \end{pmatrix}$ et $\vec{v} \begin{pmatrix} x' \\ y' \\ z' \end{pmatrix}$ exprimés dans la BOND $(\vec{i}, \vec{j}, \vec{k})$ s'obtient directement par la formule

$$\vec{u} \wedge \vec{v} = \begin{pmatrix} yz' - zy' \\ zx' - xz' \\ xy' - yx' \end{pmatrix}.$$

Exercice 2 (Équation cartésienne d'un plan)

Déterminer l'équation cartésienne du plan \mathcal{P} passant par le point $A \begin{pmatrix} -5 \\ 1 \\ 0 \end{pmatrix}$ et dirigé par les vecteurs $\vec{u} \begin{pmatrix} -2 \\ 1 \\ 3 \end{pmatrix}$ et $\vec{v} \begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix}$.

Tous les outils que nous venons d'introduire permettent notamment de déterminer la distance entre un point quelconque M de l'espace et le plan $\mathcal P$ normal à $\vec n$ passant par A:

$$\boxed{d(M,\mathcal{P}) = \frac{\left|\overrightarrow{AM} \cdot \overrightarrow{n}\right|}{\left\|\overrightarrow{n}\right\|}}.$$

3

Exercice 3 (Distance d'un point à un plan)

Calculer la distance entre le point $M\begin{pmatrix}1\\1\\0\end{pmatrix}$ et le plan \mathcal{P} de l'exercice précédent.